NearestNeighbors.jl is a Julia package for performing nearest neighbor searches.
There are currently four types of trees available:
KDTree: Recursively splits points into groups using hyper-planes. Best for low-dimensional data with axis-aligned metrics.BallTree: Recursively splits points into groups bounded by hyper-spheres. Suitable for high-dimensional data and arbitrary metrics.BruteTree: Not actually a tree. It linearly searches all points in a brute force manner. Useful as a baseline or for small datasets.PeriodicTree: Wraps one of the trees above to handle periodic boundary conditions. Essential for simulations with periodic domains.
These trees can be created using the following syntax:
KDTree(data, metric; leafsize, reorder)
BallTree(data, metric; leafsize, reorder)
BruteTree(data, metric; leafsize, reorder) # leafsize and reorder are unused for BruteTree
PeriodicTree(tree, bounds_min, bounds_max)data: The points to build the tree from, either as- A matrix of size
nd × npwherendis the dimensionality andnpis the number of points, or - A vector of vectors with fixed dimensionality
nd, i.e.,datashould be aVector{V}whereVis a subtype ofAbstractVectorwith definedlength(V). For example aVector{V}whereV = SVector{3, Float64}is ok becauselength(V) = 3is defined.
- A matrix of size
metric: TheMetric(fromDistances.jl) to use, defaults toEuclidean.KDTreeworks with axis-aligned metrics:Euclidean,Chebyshev,Minkowski, andCityblockwhile forBallTreeandBruteTreeother pre-definedMetrics can be used as well as custom metrics (that are subtypes ofMetric).leafsize: Determines the number of points (default 25) at which to stop splitting the tree. There is a trade-off between tree traversal and evaluating the metric for an increasing number of points.reorder: Iftrue(default), during tree construction this rearranges points to improve cache locality during querying. This will create a copy of the original data.tree: An existing tree (KDTree,BallTree, orBruteTree) built from your data.bounds_min,bounds_max: Vectors defining the periodic domain boundaries. Length must equal the point dimensionality, and every point indatamust already lie within[bounds_min[i], bounds_max[i]]. UseInfinbounds_maxfor non-periodic dimensions.
All trees in NearestNeighbors.jl are static, meaning points cannot be added or removed after creation.
Note that this package is not suitable for very high dimensional points due to high compilation time and inefficient queries on the trees.
Example of creating trees:
using NearestNeighbors
data = rand(3, 10^4)
# Create trees
kdtree = KDTree(data; leafsize = 25)
balltree = BallTree(data, Minkowski(3.5); reorder = false)
brutetree = BruteTree(data)
periodictree = PeriodicTree(kdtree, [0.0, 0.0, 0.0], [1.0, 1.0, 1.0])KDTree and BallTree support parallel tree construction when multiple threads are available:
parallel: Enable/disable parallel tree building (default:Threads.nthreads() > 1)
For large datasets, parallel construction can provide significant speedups (~4× faster with 8 threads). Start Julia with julia --threads=N to enable.
# Parallel by default when multiple threads available
kdtree = KDTree(data)
balltree = BallTree(data)
# Explicitly disable parallel building
kdtree_seq = KDTree(data; parallel=false)A kNN search finds the k nearest neighbors to a given point or points. This is done with the methods:
knn(tree, point[s], k [, skip=Returns(false)]) -> idxs, dists
knn!(idxs, dists, tree, point, k [, skip=Returns(false)])tree: The tree instance.point[s]: A vector or matrix of points to find theknearest neighbors for. A vector of numbers represents a single point; a matrix means theknearest neighbors for each point (column) will be computed.pointscan also be a vector of vectors.k: Number of nearest neighbors to find.skip(optional): A predicate function to skip certain points, e.g., points already visited.
For the single closest neighbor, you can use nn:
nn(tree, point[s] [, skip=Returns(false)]) -> idx, distExamples:
using NearestNeighbors
data = rand(3, 10^4)
k = 3
point = rand(3)
kdtree = KDTree(data)
idxs, dists = knn(kdtree, point, k)
idxs
# 3-element Array{Int64,1}:
# 4683
# 6119
# 3278
dists
# 3-element Array{Float64,1}:
# 0.039032201026256215
# 0.04134193711411951
# 0.042974090446474184
# Multiple points
points = rand(3, 4)
idxs, dists = knn(kdtree, points, k)
idxs
# 4-element Array{Array{Int64,1},1}:
# [3330, 4072, 2696]
# [1825, 7799, 8358]
# [3497, 2169, 3737]
# [1845, 9796, 2908]
# dists
# 4-element Array{Array{Float64,1},1}:
# [0.0298932, 0.0327349, 0.0365979]
# [0.0348751, 0.0498355, 0.0506802]
# [0.0318547, 0.037291, 0.0421208]
# [0.03321, 0.0360935, 0.0411951]
# Static vectors
using StaticArrays
v = @SVector[0.5, 0.3, 0.2];
idxs, dists = knn(kdtree, v, k)
idxs
# 3-element Array{Int64,1}:
# 842
# 3075
# 3046
dists
# 3-element Array{Float64,1}:
# 0.04178677766255837
# 0.04556078331418939
# 0.049967238112417205
# Preallocating input results
idxs, dists = zeros(Int32, k), zeros(Float32, k)
knn!(idxs, dists, kdtree, v, k)A range search finds all neighbors within the range r of given point(s). This is done with the methods:
inrange(tree, point[s], radius) -> idxs
inrange!(idxs, tree, point, radius)tree: The tree instance.point[s]: A vector or matrix of points to find neighbors for.radius: Search radius.
Note: Distances are not returned, only indices.
Example:
using NearestNeighbors
data = rand(3, 10^4)
r = 0.05
point = rand(3)
balltree = BallTree(data)
idxs = inrange(balltree, point, r)
# 4-element Array{Int64,1}:
# 317
# 983
# 4577
# 8675
# Updates `idxs`
idxs = Int32[]
inrange!(idxs, balltree, point, r)
# counts points without allocating index arrays
neighborscount = inrangecount(balltree, point, r)Find all pairs of points within a tree that are within a given radius of each other:
inrange_pairs(tree, radius, sortres) -> pairstree: The tree instance (KDTree, BallTree, or BruteTree).radius: Search radius.sortres(optional): Sort the result pairs (default: false).
Returns a vector of tuples (i, j) where i < j representing pairs of point indices within the radius.
Example:
using NearestNeighbors
data = rand(3, 100)
kdtree = KDTree(data)
# Find all pairs within radius 0.1
pairs = inrange_pairs(kdtree, 0.1)
# pairs might look like:
# [(1, 5), (2, 47), (3, 89), ...]
# Each tuple (i,j) means points i and j are within distance 0.1The PeriodicTree provides nearest neighbor searches with periodic boundary conditions. It reuses an internal deduplication buffer, so the same PeriodicTree instance should not be queried concurrently from multiple threads without external synchronization.
A PeriodicTree wraps an existing tree (KDTree, BallTree, or BruteTree) and handles periodic boundary conditions:
PeriodicTree(tree, bounds_min, bounds_max)tree: An existing tree built from your databounds_min: Vector of minimum bounds for each dimensionbounds_max: Vector of maximum bounds for each dimension (useInffor non-periodic dimensions)
Basic periodic boundaries:
using NearestNeighbors, StaticArrays
# Create data in a 2D periodic domain
data = [SVector(0.1, 0.2), SVector(0.8, 0.9), SVector(0.5, 0.5)]
kdtree = KDTree(data)
# Create periodic tree with bounds [0,1] × [0,1]
ptree = PeriodicTree(kdtree, [0.0, 0.0], [1.0, 1.0])
# Query near boundary - finds neighbors through periodic wrapping
query_point = [0.05, 0.15] # Near data[1] = [0.1, 0.2]
neighbor_point = [0.95, 0.85] # Near data[2] = [0.8, 0.9] via wrapping
idxs, dists = knn(ptree, query_point, 2)
# Finds both nearby points, including wrapped distancesMixed periodic/non-periodic dimensions:
# 2D domain: x-periodic, y-infinite
data = [SVector(1.0, 2.0), SVector(9.0, 8.0)]
kdtree = KDTree(data)
ptree = PeriodicTree(kdtree, [0.0, 0.0], [10.0, Inf])
# Query near x-boundary finds wrapped neighbor
query = [0.5, 3.0]
idxs, dists = knn(ptree, query, 1)
# Finds data[1] with wrapped x-distance of 0.5 instead of 8.5By default, trees store a copy of the data provided during construction. For data sets larger than available memory, DataFreeTree can be used to strip a tree of its data field and re-link it later.
Example with a large on-disk data set:
using Mmap
ndim = 2
ndata = 10_000_000_000
data = Mmap.mmap(datafilename, Matrix{Float32}, (ndim, ndata))
data[:] = rand(Float32, ndim, ndata) # create example data
dftree = DataFreeTree(KDTree, data)dftree stores the indexing data structures. To perform look-ups, re-link the tree to the data:
tree = injectdata(dftree, data) # yields a KDTree
knn(tree, data[:,1], 3) # perform operations as usual